COHERENT POWER SERIES RING AND WEAK GORENSTEIN GLOBAL DIMENSION
نویسندگان
چکیده
منابع مشابه
Gorenstein Weak Dimension of a Coherent Power Series Rings
We compute the Gorenstein weak dimension of a coherent power series rings over a commutative rings and we show that, in general, Gwdim (R) ≤ 1 does not imply that R is an arithmetical ring.
متن کاملOn (weak) Gorenstein Global Dimensions
In this note, we characterize the (weak) Gorenstein global dimension for arbitrary associative rings. Also, we extend the well-known Hilbert’s syzygy Theorem to the weak Gorenstein global dimension, and we study the weak Gorenstein homological dimensions of direct product of rings which gives examples of non-coherent rings with finite Gorenstein dimensions > 0 and infinite classical weak dimens...
متن کاملRings with Finite Gorenstein Global Dimension
We find new classes of non noetherian rings which have the same homological behavior that Gorenstein rings.
متن کاملGorenstein Global Dimensions and Cotorsion Dimension of Rings
In this paper, we establish, as a generalization of a result on the classical homological dimensions of commutative rings, an upper bound on the Gorenstein global dimension of commutative rings using the global cotorsion dimension of rings. We use this result to compute the Gorenstein global dimension of some particular cases of trivial extensions of rings and of group rings.
متن کاملGorenstein Dimension of Modules
R ring (always commutative and Noetherian) (R,m,k) local ring with maximal ideal m and k = R/m L,M,N, . . . R-modules (always finitely generated) M HomR(M,R), the dual of M D(M) the Auslander dual of M (Definition 2) σM : M wM∗∗ the natural evaluation map; KM = Ker(σM ), CM = Coker(σM ) G-dimR(M),G-dim(M) Gorenstein dimension of M (Definition 16) G-dim(M) <loc ∞ M has locally finite Gorenstein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2013
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089512000705